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Abstract

Background: Mobility is a meaningful aspect of an individual’s health whose quantification can provide clinical insights.
Wearable sensor technology can quantify walking behaviors (a key aspect of mobility) through continuous passive monitoring.

Objective: Our objective was to characterize the analytical performance (accuracy and reliability) of a suite of digital measures
of walking behaviors as critical aspects in the practical implementation of digital measures into clinical studies.

Methods: We collected data from a wrist-worn device (the Verily Study Watch) worn for multiple days by a cohort of volunteer
participants without a history of gait or walking impairment in a real-world setting. On the basis of step measurements computed
in 10-second epochs from sensor data, we generated individual daily aggregates (participant-days) to derive a suite of measures
of walking: step count, walking bout duration, number of total walking bouts, number of long walking bouts, number of short
walking bouts, peak 30-minute walking cadence, and peak 30-minute walking pace. To characterize the accuracy of the measures,
we examined agreement with truth labels generated by a concurrent, ankle-worn, reference device (Modus StepWatch 4) with
known low error, calculating the following metrics: intraclass correlation coefficient (ICC), Pearson r coefficient, mean error,
and mean absolute error. To characterize the reliability, we developed a novel approach to identify the time to reach a reliable
readout (time to reliability) for each measure. This was accomplished by computing mean values over aggregation scopes ranging
from 1 to 30 days and analyzing test-retest reliability based on ICCs between adjacent (nonoverlapping) time windows for each
measure.

Results: In the accuracy characterization, we collected data for a total of 162 participant-days from a testing cohort (n=35
participants; median observation time 5 days). Agreement with the reference device–based readouts in the testing subcohort
(n=35) for the 8 measurements under evaluation, as reflected by ICCs, ranged between 0.7 and 0.9; Pearson r values were all
greater than 0.75, and all reached statistical significance (P<.001). For the time-to-reliability characterization, we collected data
for a total of 15,120 participant-days (overall cohort N=234; median observation time 119 days). All digital measures achieved
an ICC between adjacent readouts of >0.75 by 16 days of wear time.

Conclusions: We characterized the accuracy and reliability of a suite of digital measures that provides comprehensive information
about walking behaviors in real-world settings. These results, which report the level of agreement with high-accuracy reference
labels and the time duration required to establish reliable measure readouts, can guide the practical implementation of these
measures into clinical studies. Well-characterized tools to quantify walking behaviors in research contexts can provide valuable
clinical information about general population cohorts and patients with specific conditions.

(JMIR Hum Factors 2023;10:e48270) doi: 10.2196/48270

JMIR Hum Factors 2023 | vol. 10 | e48270 | p. 1https://humanfactors.jmir.org/2023/1/e48270
(page number not for citation purposes)

Kowahl et alJMIR HUMAN FACTORS

XSL•FO
RenderX

mailto:natekowahl@verily.com
http://dx.doi.org/10.2196/48270
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

digital measurements; wearable technology; mobility measurements; walking patterns; wearable; wearables; sensor; sensors;
mobility; measurement; measurements; walk; walking; gait; step; wrist-worn; reliability; accuracy

Introduction

Assessing an individual’s mobility can provide meaningful
insights into their general health status. In clinical settings,
mobility is a fundamental factor to define prognosis and care
as it is closely associated with a wide array of health outcomes
[1-3]. However, accurate and reliable quantification of mobility
in real-world settings remains challenging because self-reported
data from instruments such as the International Physical Activity
Questionnaire can be biased by limited recall and social
desirability [4,5].

The interest in quantifying physical activity using wearable
devices has recently increased, as these technologies can collect
objective individualized data [6]. Wearable sensors have been
incorporated into clinical studies across different disease states
to enable movement analyses and the quantification of discrete
physical activities to develop clinically meaningful end points
[7,8].

Yet, to cement their research utility, two aspects of these digital
measurements need to be properly characterized: (1) the
accuracy with which a digital measurement reads the parameters
of interest [9] and (2) the amount of aggregated data needed to
reliably capture an individual’s underlying behavioral state,
minimizing noise related to natural variability, which usually
translates into an aggregation time period for data collection
(time to reliability). Although accuracy is always a critical aspect
in the characterization of a measure’s performance, time to
reliability tends to be ignored, even though it is key for
establishing fundamental study design specifications (eg,
collection time periods and length of wear time per day),
defining baselines, or computing power calculations for the
detection of intervention effects or other changes.

Studies characterizing the performance of digital walking
measures often focus on step count. However, the literature
around these studies shows considerable heterogeneity across
designs and some notable limitations. First, analyses tend to
rely on truth labels originated by participants’ self-reports,
short-term close monitoring [10-12], or from reference devices
with suboptimal accuracy (mean absolute percentage error
>20%) and with the same body placement as the investigational
devices, which would bias agreement results [13]. Second, these
studies are often conducted in artificial laboratory environments,
which inherently limit behavior range and are susceptible to
subjectivity, assessment bias, and unreliability [14-16]. Third,
reliability characterization for investigational digital
measurements is often absent from studies, despite having been
acknowledged as an important element for the validation of
clinically important research metrics, such as patient-reported
outcomes [17]. Beyond step counts, there have been studies that
have used other digital measures (eg, walking intensity captured
by the peak 30-minute cadence) to generate clinical insights but
without full characterization of their performance [18-29].

In a previous study, we developed an algorithm that accurately
classifies ambulatory status from data collected from a
wrist-worn device, characterizing its performance across diverse
demographic groups in a real-world setting [30]. Further, results
from a substudy of an interventional randomized phase 2 trial
demonstrated that digital measures of physical activity (step
count and ambulatory time) could be sensitive to treatment
effects in patients with Lewy body dementia [31].

Herein, we report on the development of a series of measures
that can capture walking behavior comprehensively,
characterizing their analytical performance in accuracy and
reliability. These measures included (1) step count, (2) walking
bout duration, (3) number of total walking bouts, (4) number
of long walking bouts, (5) number of short walking bouts, (6)
peak 30-minute walking cadence, and (7) peak 30-minute
walking pace. To characterize their accuracy, we compared the
measure readouts generated from a study device with highly
accurate truth labels from an ankle-worn reference device in
healthy volunteers. To characterize their reliability, we
developed a novel approach to calculate the aggregated time
required to reach a reliable readout (time to reliability) for each
measure.

Methods

Study Participants
The study cohort (pilot program study) included adult volunteer
participants, recruited among Verily Life Sciences employees
in 2 locations (South San Francisco, CA, and Cambridge, MA),
without specific selection criteria. Gender and age information
was collected for the accuracy characterization (not for the
reliability characterization). This study was determined to be
exempt research that did not require institutional review board
review.

Devices
The Verily Study Watch was the study device. This is a
wrist-worn smartwatch that records acceleration data via an
onboard inertial measurement unit with a 30 Hz 3-axis
accelerometer. The study device also has a
photoplethysmography sensor and an additional accelerometer
and gyroscope with a 100 to 200 Hz sample rate, which this
study did not use.

For the accuracy characterization, we used the ankle-worn
Modus StepWatch 4, a Food and Drug Administration–listed,
200 Hz 3-axis accelerometer device, as a reference to obtain
ground truth labels for step counts (and, subsequently, the other
derived walking measures); raw acceleration data from this
device were not used for this study. This device has shown the
greatest accuracy for step counting relative to other wearable
devices compared with human counting in real-world and in-lab
settings [24,32].
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Generation of Digital Measurements
We collected continuous, raw accelerometer sensor data from
the study smartwatch, computing step counts for every
10-second, nonoverlapping epoch (for additional information
about the algorithm associated with the study device to
determine step counts, see Multimedia Appendix 1), and

collected step count outputs from the reference device (generated
by the algorithm associated with the StepWatch) also in
10-second epochs. From the 10-second epoch-based step counts,
other measures of walking were derived, applying the same
computations to the step counts from both devices (summarized
in Table 1). We report the measure readouts as daily aggregates
for individual participants (ie, participant-days).

Table 1. Summary of walking measure definitions.

DefinitionDaily walking measure

Summed number of steps per dayStep count

Summed number of walking bouts per participant-dayNumber of walking boutsa

Summed number of walking bouts lasting between ≥30 seconds and <1 minute, per participant-dayNumber of short walking bouts

Summed number of walking bouts lasting ≥2 minutes per participant-dayNumber of long walking bouts

Mean duration of daily walking boutsWalking bout duration, mean

SD of the duration of daily walking boutsWalking bout duration, SD

Highest bout duration below the top 5% longest boutsWalking bout duration, 95th percentile

For each participant-day, average cadence for the 180 ten-second epochs (ie, 30 minutes, not neces-
sarily contiguous) with the highest cadence

Peak 30-minute walking cadenceb

For each participant-day, average pace (calculated from the cadence and estimated stride length
based on gender and height) for the 180 ten-second epochs (ie, 30 minutes) with the highest cadence
(namely, the daily peak 30-minute cadence); measured as meter/second

Peak 30-minute walking pace

aA walking bout was defined as a series of contiguous 10-second epochs containing ≥6 steps each and lasting for ≥30 seconds (ie, at least 3 epochs).
Epochs were considered contiguous if they were not interrupted by >20 seconds (ie, by no more than two 10-second epochs).
bWalking cadence was defined as the number of steps per unit of time (in this study, per second—steps/second).

Analyses

Accuracy Characterization
For the characterization of accuracy, the observation period
ranged from June 2019 to December 2019. The overall analysis
cohort (N=70) was split into 2 equal subcohorts (n=35): training
and testing groups (Figure S1 in Multimedia Appendix 1).
Participants were required to wear the 2 devices, the smartwatch
and the reference device, throughout waking hours for up to 10
days. Step counts were obtained for both the study and the
reference devices, for as long as both devices had been worn
simultaneously by each participant, and filtered for days with
≥8 hours of wear time and >100 steps. Each subsequent measure
was derived based on step counts from each device (Table 1)
and compared for agreement. Agreement was examined using
the following metrics: Fisher intraclass correlation coefficient
(ICC) as the main metric, Pearson r coefficient, mean error, and
mean absolute error. For each metric, we calculated 95% CIs
by bootstrapping with 1000 resampling iterations to account
for multiple days (generally 5) from a given participant.
Additionally, to further characterize the degree of agreement
and bias of each measure, we examined measurements and
distributions between devices and Bland-Altman plots with 95%
limits of agreement.

Reliability Characterization
For time-to-reliability characterization, the observation period
was 20 months (April 13, 2018, to December 31, 2019). This
analysis was designed to determine the duration of time (from

1 to 30 days) over which each measure needs to be aggregated
(the different lengths of time tested were termed “aggregation
scopes”) to yield stable values, indicating that it reliably captures
an individual’s underlying behavioral state. Data were
considered analyzable for this objective when participants had
worn the device for at least double the duration of a given
aggregation scope (in order to have data for 2 nonoverlapping
time windows), starting from a minimum of 2 days (for the
shortest aggregation scope of 1 day) to a minimum of 60 days
(for the longest aggregation scope of 30 days); in addition, at
least 50% of the days in each time window had to have ≥12
hours of daily wear. The number of participants meeting these
criteria varied according to the span of the aggregation scopes
(N=234 for the 1-day aggregation scope [ie, the smallest
aggregation scope had the largest cohort]; n=81 for the 30-day
aggregation scope [smallest cohort for the largest aggregation
scope]; Figure S1B in Multimedia Appendix 1).

In this analysis, we included the same set of measures as for
the accuracy characterization, except the 30-minute peak
walking pace, because the measure is derived directly from
30-minute peak walking cadence (Table 1); therefore, the results
of this analysis were expected to be identical between these 2
measures. We calculated Fisher ICCs between adjacent,
nonoverlapping windows of time for each aggregation scope
(1-30 days). We computed a rolling mean for each daily
aggregated measure over the set number of days for each
aggregation scope and then computed the ICC between adjacent
windows. We repeated this computation by shifting the start
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date of each window by 1 day and repeated the computation
testing aggregation scopes between 1 and 30 days.

Results

Accuracy Characterization
A total of 162 participant-days worth of data were collected
from the 35 participants in the test cohort, with each participant
contributing 1 to 10 days (median 5 days). The mean daily step
count, daily ambulatory time, and wear time per participant-day
were 10,075.88 (SD 4321.07) steps, 1.86 (SD 0.78) hours, and
13.73 (SD 3.00) hours, respectively (Figure S2 in Multimedia
Appendix 1).

For each measure of interest (see the Methods section), the
comparison of the values generated from the study device
against the reference device showed ICC values ranging between
0.701 and 0.865 (Table 2, Figure 1); the measure “mean duration
of daily bouts” produced the lowest ICC value (0.701), and
“daily step count” had the highest (0.865). Pearson r values
were all greater than 0.75, and all values were statistically
significant (P<.001; Table 2). The Bland-Altman analysis
(Figure 2, middle) revealed that measure differences between
the study and reference devices were not dependent on the
measure value without significant bias. Scatter plots (Figure 2,
left) and distribution (Figure 2, right) of measures between study
and reference devices showed overlap for all 9 measures of
walking.

Table 2. Summary of results from the characterization of accuracy of the measures generated from the study device compared with those collected
from the reference device (N=35).

MAEc (95% CI)MEb (95% CI)Pearson r (95% CI)ICCa (95% CI)Accuracy metric

1643.145 (1196.832
to 1996.216)

151.450 (–486.869 to
726.201)

0.881 (0.832 to
0.941)

0.865 (0.809 to 0.933)Daily step count

17.141 (12.985 to
20.371)

14.143 (9.657 to
17.607)

0.784 (0.657 to
0.922)

0.701 (0.529 to 0.876)Mean duration of daily bouts

32.585 (22.038 to
41.081)

27.813 (17.180 to
36.224)

0.813 (0.659 to
0.948)

0.738 (0.525 to 0.918)Daily bout duration, SD

69.620 (49.051 to
85.290)

50.293 (28.720 to
67.285)

0.763 (0.550 to
0.932)

0.715 (0.433 to 0.918)95th percentile of daily bout duration

11.846 (9.743 to
13.698)

–0.611 (–3.740 to
2.840)

0.757 (0.632 to
0.848)

0.756 (0.620 to 0.838)Number of daily bouts

2.858 (2.426 to 3.232)1.438 (0.780 to 2.103)0.781 (0.671 to
0.861)

0.755 (0.638 to 0.845)Number of long daily bouts

8.401 (7.172 to 9.542)–2.747 (–4.553 to
–0.736)

0.768 (0.648 to
0.830)

0.754 (0.621 to 0.811)Number of short daily bouts

0.100 (0.080 to 0.118)0.045 (0.013 to 0.076)0.773 (0.662 to
0.862)

0.734 (0.603 to 0.841)Daily peak 30-minute cadence

0.070 (0.057 to 0.082)0.030 (0.007 to 0.051)0.802 (0.710 to
0.877)

0.784 (0.668 to 0.873)Daily peak 30-minute pace

aICC: intraclass correlation coefficient.
bME: mean error.
cMAE: mean absolute error.
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Figure 1. Accuracy characterization: ICC results (and 95% CIs) obtained from the comparison of the digital measurements generated from the study
device against those from the reference device. ICC: intraclass correlation coefficient.
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Figure 2. Accuracy characterization: detailed results of the comparisons of the digital measures generated from the study device against those from
the reference device. Left column: plots of study device readouts (y-axis) versus reference device readouts (x-axis). Middle column: modified Bland-Altman
plot showing the difference in mean values between devices (y-axis) versus mean values from the reference device (x-axis). Right column: readout
value distributions for both devices in the testing subcohort. (A) Daily step count. (B) Daily walking bout duration, mean. (C) Daily walking bout
duration, SD. (D) Daily walking bout duration, 95th percentile. (E) Number of daily walking bouts. (F) Number of daily long walking bouts. (G) Number
of daily short walking bouts. (H) Daily peak 30-minute walking cadence. (I) Daily peak 30-minute walking pace. LoA: limits of agreement. See
Multimedia Appendix 2 for higher resolution image.

Reliability Characterization
In the cohort of eligible participants who yielded analyzable
data (see the Methods section, N=234), individual participant
data were collected for up to 596 (median 119) days for a total
of 15,120 participant-days (see Figure S1B in Multimedia
Appendix 1). The mean daily step count, daily ambulatory time,
and daily wear time per participant-day were 9701.06 (SD

4321.88) steps, 77.42 (SD 39.77) minutes, and 17.36 (SD 4.04)
hours, respectively.

We defined aggregation scopes of increasing duration from 1
day up to 30 days. For each of these scopes, the participant
subcohorts that generated data deemed analyzable were of
variable size (generally decreasing as the aggregation scope
grew, Figure 3).
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Figure 3. Time-to-reliability characterization: size of the participant subcohorts with analyzable data across the aggregation scopes tested.

Across all the measures of interest in this analysis, the stability
of the measure (estimated using ICC between adjacent time
windows for readout) increased with longer aggregation scopes.
The metrics “number of daily bouts,” “bout duration, SD,” and
“number of short bouts” reached an ICC ≥0.75 at the earliest

aggregation scope (12 days). Ultimately, all digital measures
achieved an ICC ≥0.75 by 16 days, which we defined as the
potential time-to-reliability benchmark in the context of this
study (Figure 4). ICCs reached a plateau at values ranging
between 0.78 and 0.84, depending on the measure.
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Figure 4. Time-to-reliability characterization: ICCs between adjacent readout windows according to aggregation scope duration, for the digital measures
of interest. The line represents the ICC value plot, gray shading represents 95% CIs, and red annotations indicate the aggregation scope first exceeding
an ICC value of 0.75. ICC: intraclass correlation coefficient. See Multimedia Appendix 3 for higher resolution image.

Discussion

This report expands upon prior research [30,31], presenting a
comprehensive application of an algorithm that captures step
count and other aspects of mobility, such as walking cadence
and bouts. We characterized the accuracy and reliability of this
comprehensive set of digital walking measures from users
wearing a wrist-worn device in real-world environments. We
showed that these measures of walking reached reliable readings
at around 16 days of wear time, and their levels of agreement
with the reference device, measured by ICC, ranged between
0.7 and 0.9, a performance that supports their deployment in
clinical trial settings with confidence.

Mobility and walking behaviors represent meaningful aspects
of health, known to be associated with quality of life in general

and clinical prognosis in specific settings [33-35]. Therefore,
improved methods to measure mobility and walking behaviors
have the potential to improve clinical care and clinical trial
efficiency. One of the goals of our research is to build accurate
tools to objectively quantify the aspects of walking behavior
and extract clinically meaningful information in discrete
populations of interest. In prior work, we have developed
algorithms whose outputs (measures for step counts and
ambulatory time) demonstrated sensitivity to treatment effects
in patients with Lewy body dementia [31]. We have also
characterized the accuracy of an iteration of that algorithm in
a cohort of diverse individuals in the real world [30].

To our knowledge, this report is the first to characterize the
amount of data required to ensure that a digital measure is
reliable in a real-world setting. We developed a novel analytic
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approach to characterize time to reliability, that is, the time
needed for a measure to reach a degree of stability. Time to
reliability is an important consideration to inform the design of
clinical studies tracking real-world data, as it relates to specific
metrics of interest. In this study, the time to reliability overall
for all measures was ≤16 days (ICC ≥0.75 between nonadjacent
readouts for all measures at day 16, Figure 4). This study
included healthy individuals; in a clinical context, we anticipate
that the stability of any given measure over time will be
dependent on the type and severity of the disease of interest. It
is reasonable to speculate that a mostly healthy cohort may
demonstrate more variability and a larger distribution of walking
behaviors than a cohort with disease burden, and this
necessitates further research.

Most importantly, the algorithms developed to quantify daily
step count and measures related to walking cadence and bouts
were found to be accurate (agreement between the readouts
from the study device and a highly accurate reference device
ranged between ICCs of 0.7 and 0.9 for all measures, Table 2).
Our study approach captured the measures of walking behavior
in a real-world setting, over multiple days, to closely resemble
actual use cases.

Considering the exponential growth of research on wearable
sensors and related devices in recent years, it is important to
place the capabilities described in this report in that context. In
this work, we incorporated several key innovative approaches
to address shortcomings present in comparable studies
evaluating interdevice agreement. Prior studies have used
colocated investigational and reference sensors (eg, 2 wrist-worn
devices). But because of the known potential errors associated
with body placement when capturing walking-related data
[36-39], colocation could be vulnerable to bias toward
overestimating performance. Our approach sought to mitigate
that by using a highly accurate but pragmatic and ankle-worn
source for ground truth labels. Further, most studies have
narrowly focused on step counts [10-16] for short time periods
in controlled laboratory environments (eg, only a single day in
real-world settings), or when investigating walking bout and
cadence or pace measures, they had a limited scope, with small
samples of less than 40 participants [40-42] and short tests
(sessions lasting 1 hour or less) performed in clinic. Our study
addresses these existing evidence gaps, presenting a set of digital
walking measures that are comprehensive beyond step counts
and characterizing their analytic performance (accuracy and
reliability) extensively, with data accrued throughout multiday
periods and in the course of daily living activities. Moreover,
given the research heterogeneity (comparisons of different
devices, different ground truth sources, and with different
analytic approaches), any direct comparison of study results
side by side has to be done with caution, which highlights the
need for standardization noted in professional statements in this
field [6,9,43,44].

This study had limitations in regard to the participant population
and the performance quality thresholds. First, our cohort was
limited in size and consisted of generally healthy participants.
Future studies may be needed to characterize the generalizability
of the performance of these measures in populations with
particular kinetic hallmarks (eg, neurological conditions, stroke,
and trauma) or with mobility capacity issues (eg, cardiovascular
or respiratory conditions). Our approach to determine time to
reliability can be applied across studies in any therapeutic area
and can guide study design requirements for wear time
compliance. One aspect that will require attention is the
optimization of actual compliance with hypothetical protocol
specifications about wear time because this is a device intended
for daily life use (for instance, our reliability analysis filtered
participant-day data based on a threshold of 12 hours of daily
wear time for 50% of the days over an evaluation period, but
we did so retrospectively). Second, although we report on
performance parameters, the definition of an acceptable
performance (accuracy and reliability) quality threshold remains
undefined in the field. We did not prespecify performance
categories in this study, but, for instance, prior accuracy studies
have categorized agreement ICC values 0.7-0.9 as moderate to
good [40,45], and reliability studies for patient-reported
outcomes have considered test-retest ICC >0.5 as acceptable
[46]. Importantly, what constitutes a clinically meaningful
change for each of the measures of walking will likely depend
on the therapeutic area under consideration. Further research is
also needed to address which of these measures can provide
clinically relevant insights in a given population. This set of
digital walking measures has the potential to convey
comprehensive information beyond flat quantification (via step
counts), about aspects such as maximal walking capacity,
endurance, or activity patterns during daily living, which may
have different relevance or sensitivity to detect status changes
depending on the health setting (for instance, cardiopulmonary
conditions, oncology, or neurology). Furthermore, the
optimization of the clinical utility of these measures may require
their aggregation into composite metrics. The potential
complexity of this future research brings to the forefront the
importance of establishing first a thorough understanding of
their individual analytical performance, which this study does.
We believe that the accuracy and reliability results detailed here
are the first step to support the use of digital measures of
walking as feasible and reliable end points in clinical studies.

In conclusion, we have developed algorithms that accurately
quantify daily step counts and measures of walking cadence
and bouts from users wearing a wrist-worn device in a
real-world setting. Further, we have also developed a novel
method for characterizing the time required for a digital measure
to stabilize (time to reliability). Given the growing use of
wearable sensors to measure aspects of health, these findings
may guide practical implementation of these digital measures
of walking behavior into clinical studies.
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